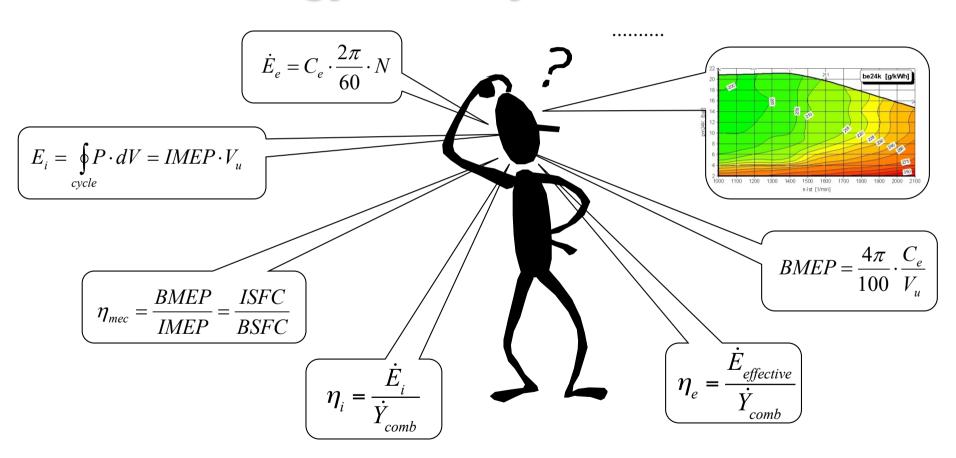


Engines and Fuel Cells

Chapter 3: Terminology and key values



Efficiencies, energies, powers, pressures, consumption, Operating map.

Learning objectives Chapter 3

- ⇒ know the main performance parameters used for reciprocating engines and the relations between them
- ⇒ understand the representation of engine parameters / key values into the whole wide operating range (**Operating Map**).

- Engine cycle representation
- Key values of reciprocating engines
 - Power
 - Torque
 - Mean pressure
 - Efficiency
 - Specific consumption
- Important Engine characteristic curves
 - Full load curve
 - Operating map

Engine cycle representation

1) $V_0 = ?$ 2) $V_0 = ?$

3) $\varepsilon = ?$

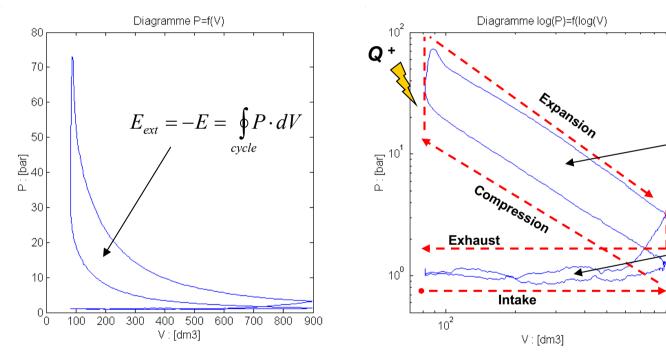
4) Engine type (# Stroke, TC)

4stroke

cycle

Engine cycle representation:

Representation with P as a function of the displacement volume: V



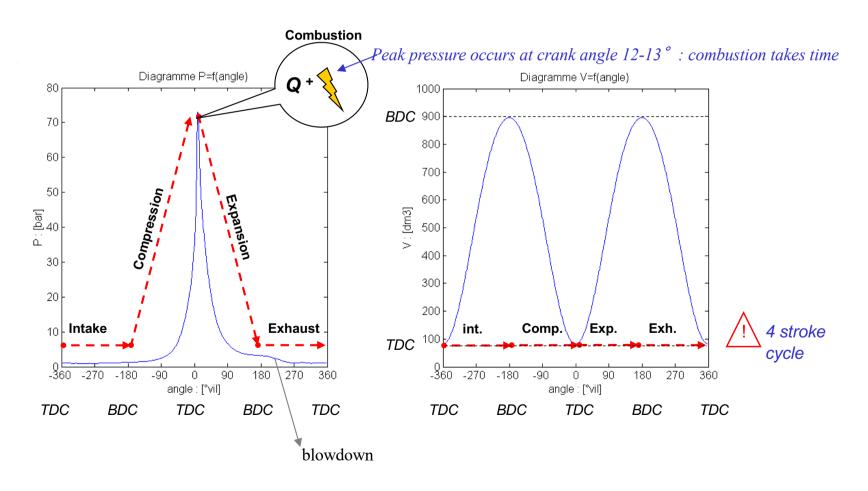
 E_{ext} : Mechanical work given by the fluid to the surrounding during the cycle

- $\Rightarrow E_{ext} < 0$ for a compression (dV < 0)
- $\Rightarrow E_{ext} > 0$ for an expansion (dV > 0)

Engine cycle representation

- Engine cycle representation:
 - 2. Representation with P as a function of the crank angle: $\varphi_{C.A}$

Definition: $\varphi_{C,A} = 0^{\circ} \Rightarrow TDC$ combustion



- Engine cycle representation
- Key values of reciprocating engines
 - 1. Power
 - 2. Torque
 - 3. Mean "pressure"
 - 4. Efficiency
 - 5. Specific fuel consumption
- Important engine characteristic curves
 - Full load curve
 - Operating map

1. Power $\dot{E}[W] = T[Nm \ or \ J]. \omega [s^{-1}]$

- Function of the output torque delivered at shaft and of the revolution speed
- Unit: [kW] or [hp]: Reminder ⇒ 1 [kW] = 1.34 [hp], 1 hp = 746 W
- Specific power: reported to the engine <u>displacement</u> [kW/dm³] or [kW/L]
- A) Effective/Brake power = delivered power by the engine (at shaft)
 - Notation: $\dot{E}_{_{\varrho}}$

i.e. with friction losses

- Measured with a dynamometer at the engine's outlet shaft (before the gearbox)
- Needs a dynamometer rotor (and a test bed)

 $\dot{E}_{e,Gross}$ = Power with auxiliaries absolutely required to run the engine

⇒ valve train system, pumps (oil, water, fuel), alternator,...

 $\dot{E}_{e,Net}$ = Power with auxiliaries + accessories (compressor, steering assistance,..)

 $\dot{E}_{e,Nom}$ = Power at nominal speed \Rightarrow only for low-speed or stationary engines

 $E_{e,Max}$ = Maximal power of the engine

- B) **Indicated** power = generated power by the gas pressure acting on the piston during the cycle (=P-v cycle surface)
 - Notation: \dot{E}_{i}
 - measured with a pressure sensor / indicator
 - needs a dynamic pressure sensor placed into the combustion chamber
 - characterizes the engine power without any mechanical friction

$$- \qquad \dot{E}_i > \dot{E}_e$$

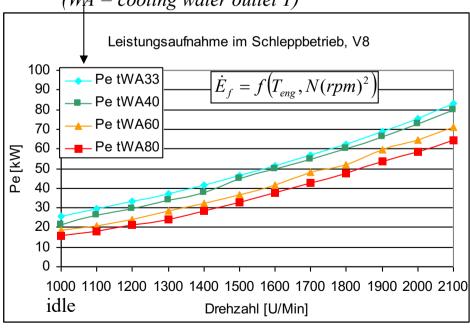
$$\dot{E}_i = \dot{E}_e + \dot{E}_f$$

C) Friction power

- Notation: \dot{E}_{f}
- characterizes the engine frictional losses
- depends on mechanical losses and the absorbed power by driving the auxiliaries

V8 500kW engine

engine oil temperature (the colder, the more friction) (WA = cooling water outlet T)



Friction power increases ~quadratically with speed

Slide 4: Indicated power = ?

Relations

(T torque (engl.) = C couple (fr.) in Nm or J)

Effective / brake power:

$$\dot{E}_e = C_e \cdot \omega$$

 ω in [rad/s]

$$\dot{E}_e = C_e \cdot \frac{2\pi}{60} \cdot N$$

N in [1/min] or [rpm]

$$\label{eq:energy_energy} \boxed{\dot{E}_{e,tot} = \dot{E}_{i,cyl} \cdot n_{cyl,E^+} - \dot{E}_{f,eng}}$$

 n_{cyl} : nb of cylinder

Indicated power:

$$\dot{E}_i = \dot{E}_e + \dot{E}_f$$

$$\dot{E}_i = n_c \cdot E_i$$
 with $n_c = \frac{N(rpm)}{60 \cdot n_{TM}}$ and $E_i = \oint_{cycle} P \cdot dV$

 n_c = number of cycles per second n_{TM} = number of revolutions per cycle

for 2-Stroke
$$n_{TM} = 1$$
,
for 4-Stroke $n_{TM} = 2$

 E_i = indicated work per cycle

Friction power:

$$\dot{E}_f = \dot{E}_i - \dot{E}_e$$

 $(TM: tacte\ moteur = strokes\ (4\ or\ 2)$

Rated brake power:
$$\dot{E}_{e,0}$$
 $\dot{E}_{e,0} = C_F \cdot \dot{E}_e$ with
$$\begin{cases} C_F = \left[\frac{99}{P_a}\right]^{1.2} \cdot \left[\frac{T}{298}\right]^{0.6} & or \\ C_F = \frac{P_{s,dry}}{P_m - P_{v,m}} \cdot \left[\frac{T_m}{T_s}\right]^{0.5} & \text{(correction factor for T, P other than 298 K, 1013 mbar)} \end{cases}$$

2) Torque

• Unit: [Nm] (X00 Nm in cars, X000 Nm in trucks)

Specific torque*: reported to engine displ. [Nm/dm³] ⇒

- Unit of pressure

 (see § mean pressure)
- ⇒ this value characterizes the engine load and is expressed in [bar]

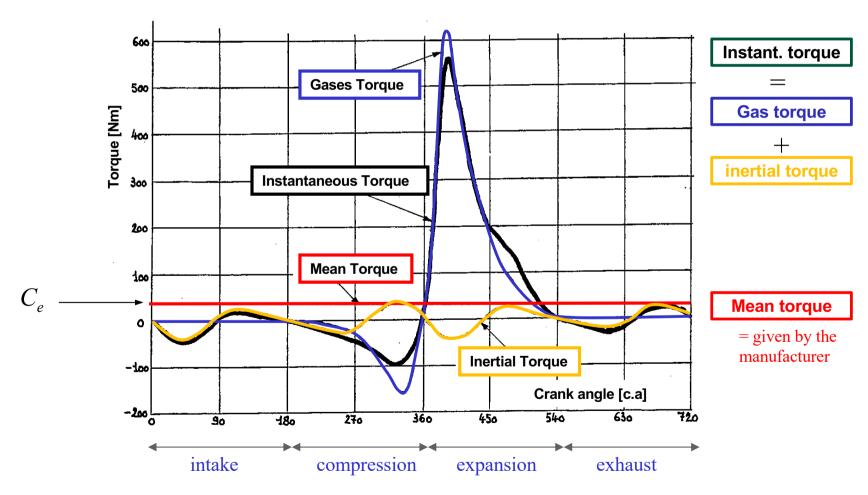
Decomposition of the different torques during a cycle (highly dynamic):

- 1) Gas torque ⇒ torque produced by the gas pressure (following combustion) acting on the piston and by means of the lever arm on the crankpin
- 2) Inertial torque ⇒ produced by the inertial forces due to the reciprocating (=accelerating/decelerating) moving masses (piston, connecting rod, crankpin)
- **3)** Instantaneous torque ⇒ result of "gas torque" + "inertial torque"
- **4)** Mean torque ⇒ average of the instant. torque produced on the crankshaft
 - measured at the engine's outlet shaft (effective torque): C_e
 - or determined with the P-v diagram (indicated torque) : C_i

^{*}example specific torque : $800 \text{ Nm/L} = 800 \text{ J} / 0.001 \text{ m}^3 = 800'000 \text{ Pa} = 800 \text{ kPa} = 8 \text{ bar}$

Torque

Representation of the different torques acting on the crankpin in a <u>single</u> <u>cylinder</u> during a 4-stroke cycle :

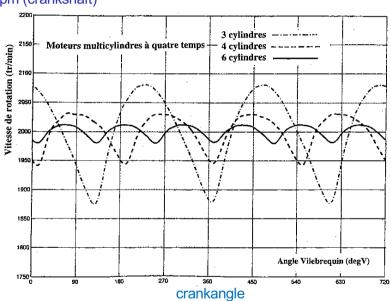


Torque

Instantaneous torque and speed variations on a <u>multicylinder</u> engine:

Variation of instantaneous torque:

 Variation of instantaneous speed:



- The fluctuations of instantaneous torque influence the acyclism of engines
 - \Rightarrow Coefficient of regularity: $\frac{\omega_{moy}}{\omega_{max} \omega_{min}}$

1) $V_0 = ?$ 2) $V_C = ? (n = 6)$

3) ε = ?

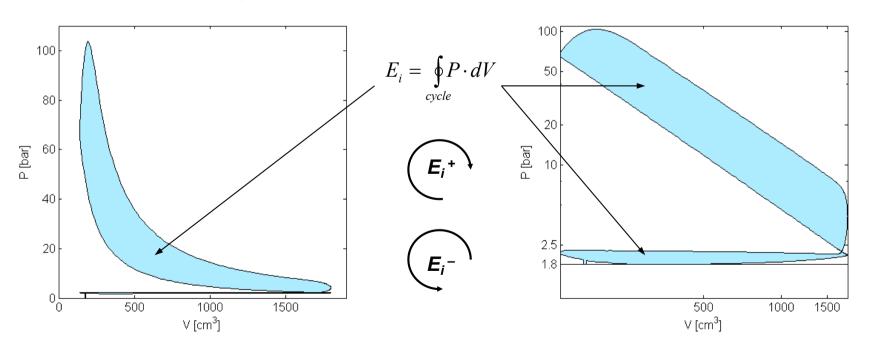
4) Engine Type (# Stroke, TC)

3) Mean "pressure"

 Reminder: if a pressure sensor inside the combustion chamber gives P for each instant during the cycle, so:

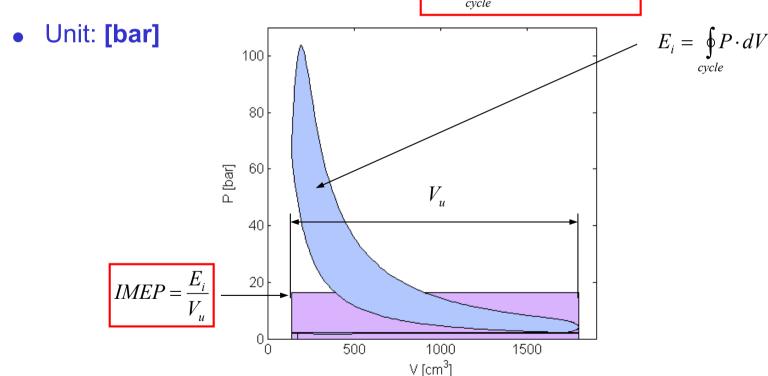
The indicated work E_i = the surface delimited by the curve in the diagram

$$P = f(V) \Rightarrow E_i = \oint_{cycle} P \cdot dV$$
 ($E_i > 0$ if clockwise, $E_i < 0$ if counterclockwise)



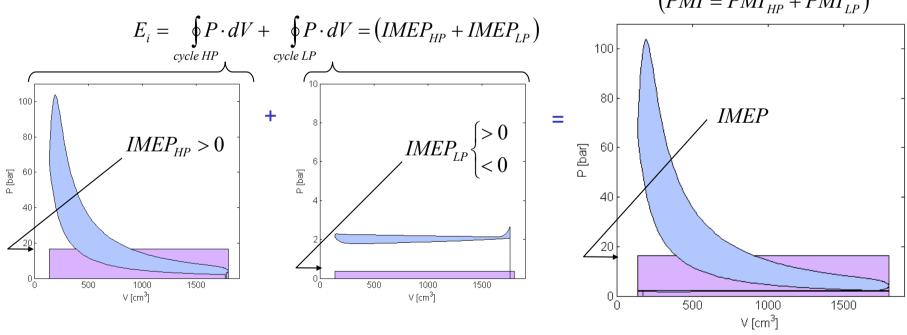
■ Mean "pressure"

• The *indicated mean effective pressure* (IMEP) corresponds to the theor. const. equivalent pressure which would be applied over the piston during the whole cycle \Rightarrow $E_i = \oint_C P \cdot dV = IMEP \cdot V_u$



Mean Pressure

- For a 4-stroke engine, the IMEP (fr: PMI) contains 2 parts:
 - IMEP high pressure (IMEP_{HP}): Compression stroke \Rightarrow Expansion stroke, IMEP_{HP} > 0
 - _ IMEP low pressure (IMEP_{LP}): Intake stroke \Rightarrow Exhaust stroke, IMEP_{LP} < 0 (or > 0)
 - Sum of the 2 terms gives the total IMEP (PMI in French): $IMEP = IMEP_{HP} + IMEP_{LP}$ $(PMI = PMI_{HP} + PMI_{IP})$



Relations:

Work and IMEP:

$$E_{i} = \oint_{cycle} P \cdot dV = IMEP \cdot V_{u} = 4\pi \cdot C_{i}$$

IMEP and indicated torque C_i :

$$IMEP = \frac{4\pi}{100} \cdot \frac{C_i}{V_u}$$

- The IMEP is measured thanks to a in-cylinder pressure sensor
- *C_i* corresponds to engine torque without mechanical friction
- IMEP corresponds to a « specific torque » in [Nm/m³]
- IMEP and indicated power E_i :

$$\dot{E}_{i} = \frac{1}{1200} \cdot IMEP \cdot V_{u} \cdot N$$

BMEP and effective torque C_e :

$$\dot{E}_e = \frac{1}{1200} \cdot BMEP \cdot V_u \cdot N$$

 C_e corresponds to the measured torque:

$$BMEP = \frac{4\pi}{100} \cdot \frac{C_e}{V_u}$$

with: \dot{E} in [kW] IMEP in [bar] C in [Nm] V_{ii} in [dm³]

with: IMEP in [bar] BMEP in [bar] V_{ii} in [dm³] N in [rpm]

BMEP, IMEP and FMEP: BMEP = IMEP - FMEP

BMEP is the "brake mean effective pressure":

FMEP is the "Friction mean effective pressure"

4a) Efficiency

1) Global or effective efficiency of an engine: $\eta_e = \frac{E_{effective}}{\dot{Y}}$

$$\eta_e = rac{\dot{E}_{effective}}{\dot{Y}_{comb}}$$

with: $\dot{E}_{effective}$: Effective power

 \dot{Y}_{comb}^{+} : Fuel transformation power (during combustion) $|\Delta h^{\circ}| = LHV$ in [KJ/kg]

$$\dot{Y}_{comb}^{+} = \dot{M}_{F} \cdot \left(LHV + \hat{h}_{F}\right) + \dot{M}_{A} \cdot \hat{h}_{A} - \dot{M}_{G} \cdot \hat{h}_{G} + \dot{M}_{cond} \cdot q_{vap}$$

with:

After $simplification \Rightarrow \dot{Y}_{comb}^+ = \dot{M}_F \cdot LHV$ <u>Hypothesis</u>: gases sur-enthalpy and condensation are omitted (intake engine conditions: $P_0 = 1$ bar, $T_0 = 25^{\circ}$ C)

Indicated efficiency: $\eta_i = \frac{\dot{E}_i}{\dot{Y}}$

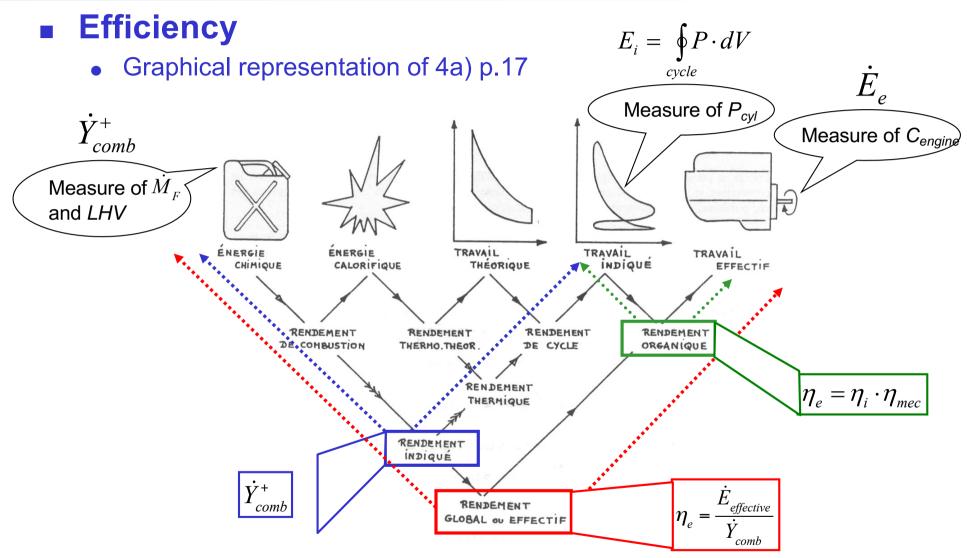
$$\eta_i = \frac{\dot{E}_i}{\dot{Y}_{comb}}$$

characterizes the global efficiency of an engine without mechanical friction

Mechanical efficiency: 3)

$$\eta_{\mathit{mec}} = rac{\dot{E}_e}{\dot{E}_i} = rac{\eta_e}{\eta_i}$$

characterizes the friction losses



4b) Efficiency

4) Theoretical thermodynamic efficiency: $\eta_{th.th}$

Ratio between the <u>ideal</u> cycle work AND the thermal energy given by the combustion process

$$\eta_{\scriptscriptstyle th.th} = rac{E_{\scriptscriptstyle ideal\; cycle}^-}{Q_{\scriptscriptstyle comb}^+}$$

Example: (Otto cycle)

$$\eta_{th.th} = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$$

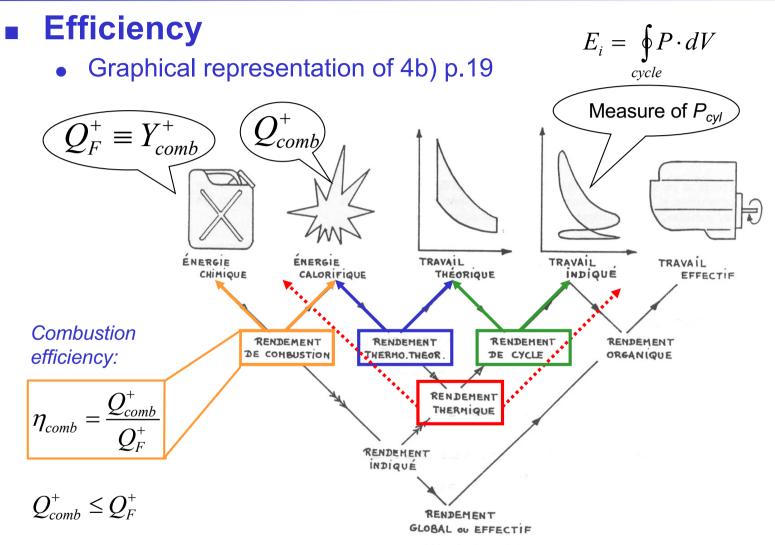
- 5) Thermal efficiency: η_t
 - Ratio between the indicated work (=<u>real</u> cycle) AND the thermal energy given by the combustion process

$$\eta_t = \frac{E_i^-}{Q_{comb}^+}$$

- 6) <u>Cycle</u> efficiency (shape efficiency) : η_{cycle}
 - Ratio between the (real) indicated work AND the ideal cycle work

$$\eta_{cycle} = rac{E_i^-}{E_{ideal\ cycle}^-}$$

$$\Rightarrow \quad \overline{\eta_{t} = \eta_{th.th} \cdot \eta_{cyclo}}$$



Pe = 500 kW $BSFC = 200 \, a/kWh$ Operating hours = 7000 h/yr Fuel costs = 2 € / L Fuel density = 0.83 kg / L Operating costs = ?

5) Specific fuel consumption (SFC; fr: CSE)

- corresponds to the mass of fuel consumed by work unit
- Unit: [g/kWh]
- Could be expressed as a function of the engine efficiency: $SFC = f(\eta_e)$
- Brake specific fuel consumption: BSFC =

$$BSFC = \frac{\binom{g}{h}}{(kW)} \rightarrow BSFC = \frac{\dot{M}_F \cdot 3600 \cdot 10^3}{\dot{E}_e}$$

$$\dot{E}_{e} = \eta_{e} \cdot \underbrace{LHV \cdot \dot{M}_{F}}_{\approx \dot{Y}_{comb}^{+}}$$

$$\Rightarrow \eta_e = \frac{3'600'000}{LHV \cdot BSFC}$$

for engines with «standard» fuel i.e. Gasoline or Diesel with a *LHV* ≈ 42'000 kJ/kg ⇒

$$\eta_e \approx \frac{83.7}{BSFC}$$

with: SFC in [g/kWh] $\dot{M}_{\scriptscriptstyle F}$ in [kg/s]

(Indicated specific fuel consumption(ISFC)): $ISFC = \frac{M_F}{ISFC}$

$$ISFC = \frac{\dot{M}_F}{\dot{E}_i}$$

- Relations
 - Relation between BSFC, ISFC and power:

$$\dot{M}_F = BSFC \cdot \dot{E}_e = ISFC \cdot \dot{E}_i$$

- Relation between BSFC, ISFC and mean pressure:
 - Mechanical efficiency:

$$\eta_{mec} = \frac{\dot{E}_e}{\dot{E}_i} = \frac{BMEP}{IMEP}$$

$$\eta_{mec} = \frac{BMEP}{IMEP} = \frac{ISFC}{BSFC}$$

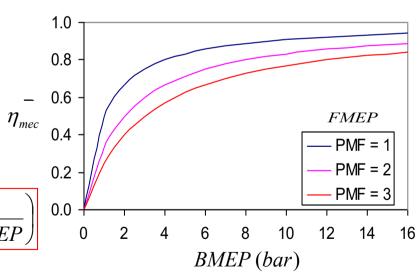
Mean pressure relations:

$$BMEP = IMEP - FMEP$$

$$\eta_{mec} = \frac{ISFC}{BSFC} = \frac{BMEP}{IMEP} = \left(\frac{BMEP}{BMEP + FMEP}\right)$$

 $BSFC \cdot BMEP = ISFC \cdot IMEP$

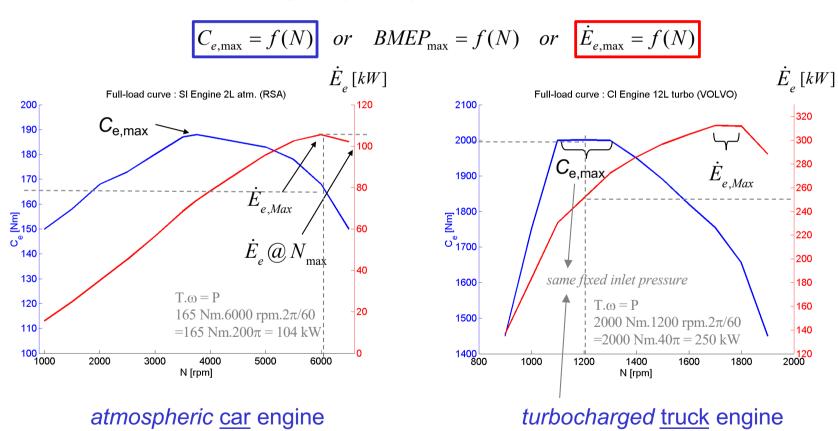
Mechanical efficiency in function of the BMEP



- Engine cycle representation
- Key values of reciprocating engines
 - Power
 - Torque
 - Mean pressure
 - Efficiency
 - Specific consumption
- Important engine characteristic curves
 - 1) Full load curve
 - 2) Operating map

1) Full load curve:

1. Performance: representation of <u>torque</u> (or <u>specific torque</u>), <u>mean pressure</u> or <u>maximal power of the engine (=load) as a function of the revolution <u>speed</u>:</u>



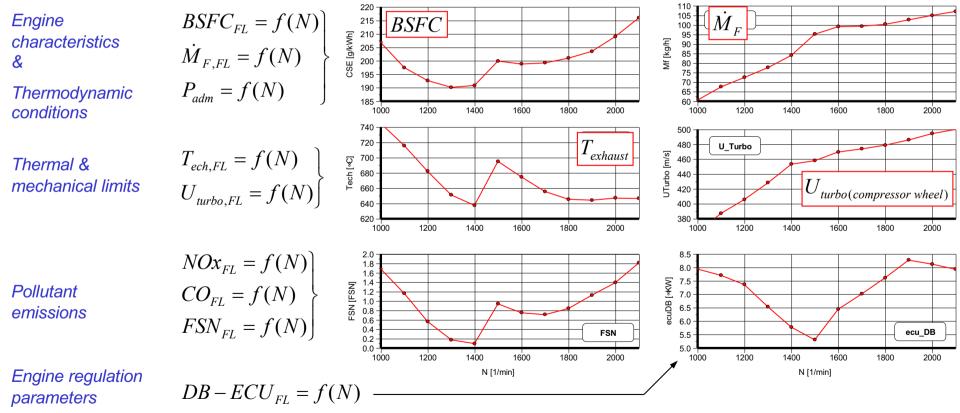
^{*}torque $C_{e,max}$ designed to be maximal at ~1/2 max. engine speed

Fuel delivery rate (g/h) = specific fuel consumption (g/kWh) * effective power (kW)

1) Full load curve:

$$\dot{M}_F = BSFC \cdot \dot{E}_e = ISFC \cdot \dot{E}_i$$

2. Performance: representation of several engine parameters in <u>full load</u> ($_{FL}$) operation as a function of the revolution speed: $X_{FL} = f(N)$



'FSN' = smoke limit

Index 0: no sooth particles

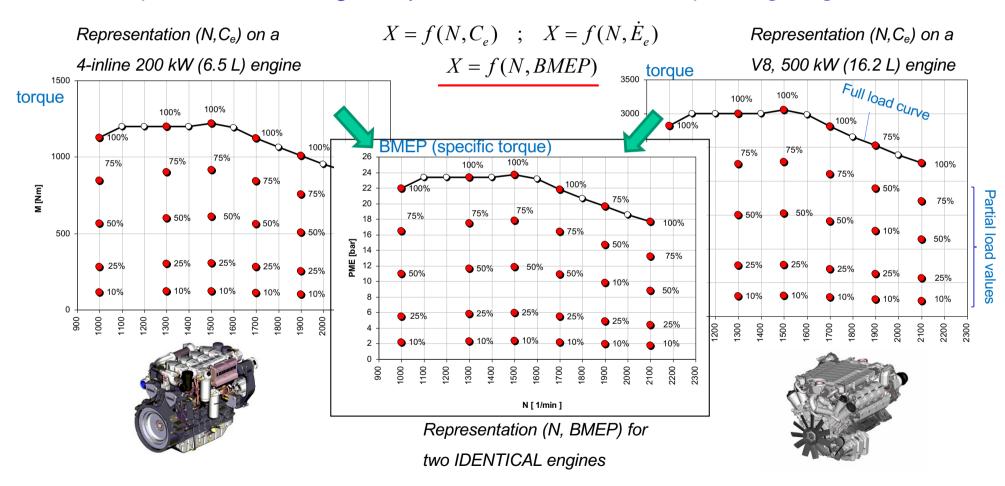
Index 2: many sooth particles

ECU: electronic control unit

'DB': delivery begin (of fuel injection)

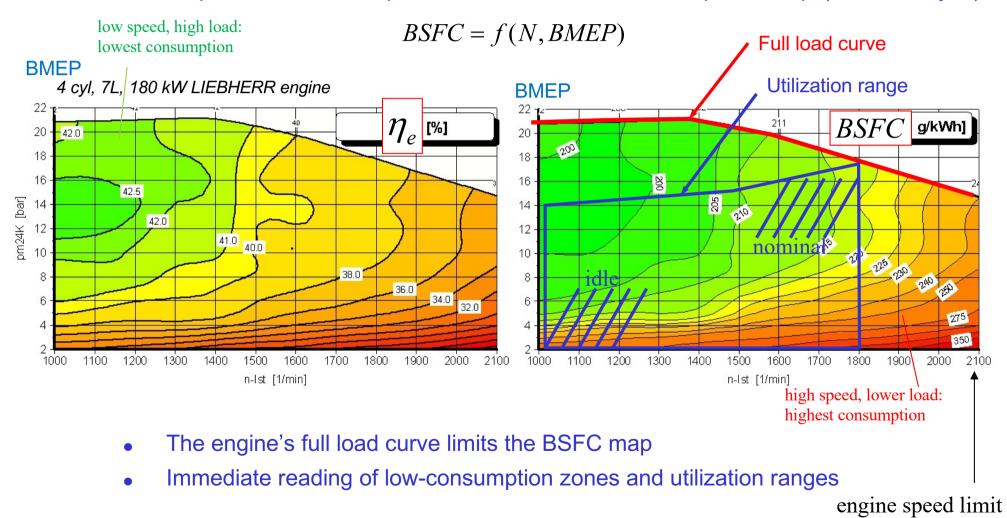
2) Operating map:

Representation of engine's parameters in the whole operating range:



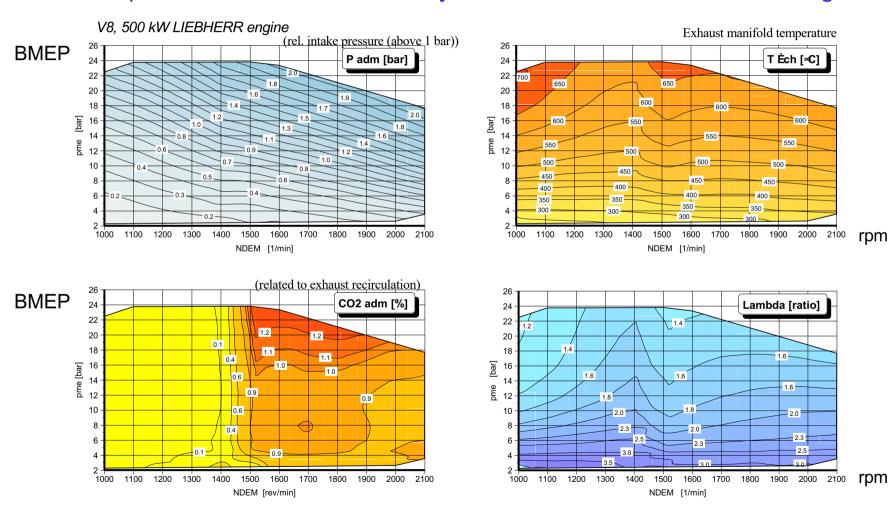
2) Operating map:

1. Representation of specific effective fuel consumption map (=efficiency%):



2) Operating map:

2. Representation of the thermodynamic conditions/states of the engine:

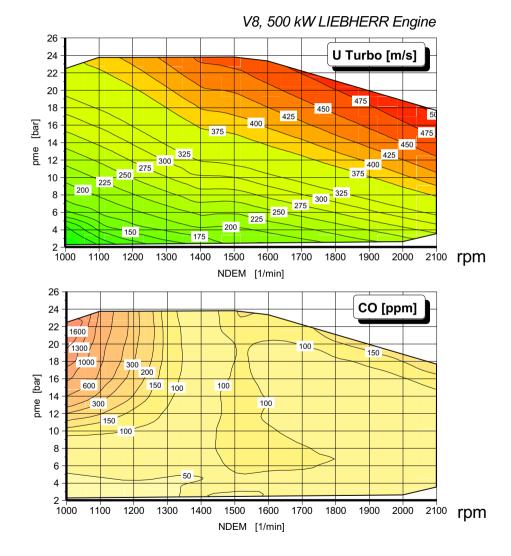


2) Operating map:

3. Representation of thermal and mechanical limits in the whole operating range:

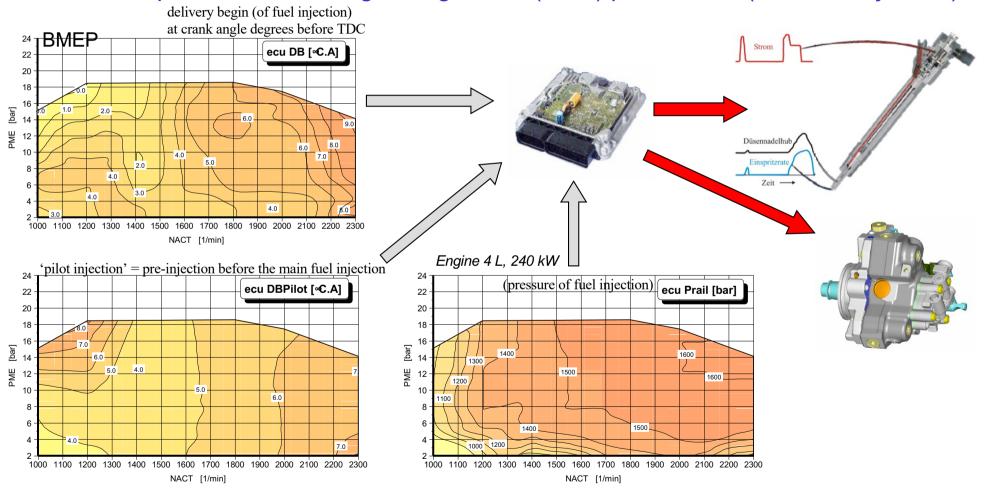
4. Representation of pollutant emissions:

Units \Rightarrow [ppm] \Rightarrow [%] \Rightarrow [g/kWh]



2) Operating map:

5. Representation of engine regulation (ECU) parameters (f.ex: fuel injection):



Reminder - combustion

Combustion process (cf. § 11.3 - Borel / Favrat)

Reminder of a combustion process

Reactant + Oxidant Process Products + Heat
$$C_v H_w S_x O_y N_z + (O_2 + 3.76 \cdot N_2) + (O_2 + 2.76 \cdot N_2) + (O_2$$

Reactant

- Fuel (hydrocarbon): $C_v H_w S_x O_y N_z \rightarrow C_v H_w \rightarrow H_2$

• Oxidant (Air) : $O_2 + 3.762 \cdot N_2$

Products:

- Combustion products: CO_2 ; H_2O

- Pollutants: NO_x ; CO; HC; SO_2 ...

- Others (no reaction): N_2 ; O_2

- Combustion process: possible cases
 - **Rich combustion or incomplete combustion** \Rightarrow Fuel excess versus O_2
 - **Lean combustion or complete combustion** \Rightarrow O_2 excess versus Fuel
 - **Stoichiometric combustion** \Rightarrow exact minimal O_2 for a complete combustion
- Air/Fuel ratio or stoichiometric ratio: R_{A/F}
 - Corresponds to the <u>mass</u> ratio (<u>or molar</u> ratio) of the air quantity versus the required Fuel quantity to obtain a stoichiometric combustion

-
$$R_{A/F}$$
 mass [kg_F / kg_{Air}]: $R_{A/F} = \frac{M_{A,sto}}{M_F} = \frac{N_{A,sto}}{N_F} \cdot \frac{\widetilde{m}_A}{\widetilde{m}_F}$

With:

 M_A in [kg of A]

 N_A in [kmol of A]

 \widetilde{m}_A in [kg/kmol of A]

- $R_{A/F}$ molar [kmol_F / kmol_{Air}]: $\widetilde{R}_{A/F} = \frac{N_{A,sto}}{N_{E}}$

$$\widetilde{R}_{A/F} = \frac{N_{A,sto}}{N_F}$$

SI engines : A/F \approx constant with load, typically 15. Regulation at $\lambda=1$.

CI engines: air flow \approx constant with load, it is the fuel flow that varies. A/F \approx 18 at full load, and A/F \approx 80 for 'no' load.

Relative Air/Fuel ratio: λ ratio

• Characterizes the deviation between M_A and $M_{A-stoich}$: $\lambda = \frac{M_A}{\lambda C}$

$$\lambda = \frac{M_A}{M_{A,sto}} = \frac{N_A}{N_{A,sto}}$$

- $_{-}$ $\lambda > 1$: lean mixture
- $\lambda < 1$: rich mixture

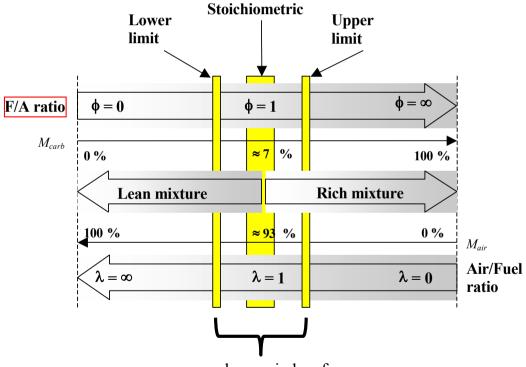
Fuel/Air ratio: φ

• Inverse of λ :

$$\phi = \frac{1}{\lambda}$$

- $\phi > 1$: rich mixture

Gasoline : $R_{A/F} \approx 14.5$ Natural gas : $R_{A/F} \approx 16.6$



compulsory window for homogeneous combustion (S.I.E) $0.7 < \lambda < 1.7$

General equation of combustion

$$N_{F} \cdot C_{v} H_{w} S_{x} O_{y} N_{z} + N_{O_{2}, sto} \cdot \left(O_{2} + 3.762 \cdot N_{2}\right) \rightarrow N_{CO_{2}} \cdot CO_{2} + N_{H_{2}O} \cdot H_{2}O + N_{SO_{2}} \cdot SO_{2} + N_{N_{2, sto}} \cdot N_{2}$$

$$R_{A/F} = \frac{M_{A, sto}}{M_{F}} = \frac{N_{A, sto}}{N_{F}} \cdot \frac{\widetilde{m}_{A}}{\widetilde{m}_{F}} = \frac{4.762 \cdot N_{O_{2}, sto}}{N_{F}} \cdot \frac{\widetilde{m}_{A}}{\widetilde{m}_{F}} = 4.762 \cdot \left(v + \frac{w}{4} + v - \frac{y}{2}\right) \cdot \frac{28.85}{\widetilde{m}_{F}}$$

■ Conventional fuels: x = 0, z = 0, $y = 0 \Rightarrow C_vH_w$

$$N_F \cdot C_v H_w + N_{O_2,sto} \cdot (O_2 + 3.762 \cdot N_2) \rightarrow N_{CO_2} \cdot CO_2 + N_{H_2O} \cdot H_2O + N_{N_{2,sto}} \cdot N_2$$

$$R_{A/F} = \frac{M_{A,sto}}{M_F} = \frac{N_{A,sto}}{N_F} \cdot \frac{\widetilde{m}_A}{\widetilde{m}_F} = \frac{4.762 \cdot N_{O_2,sto}}{N_F} \cdot \frac{\widetilde{m}_A}{\widetilde{m}_F} = 4.762 \cdot \left(v + \frac{w}{4}\right) \cdot \frac{28.85}{12 \cdot v + w}$$

• Oxygenated fuels: $\mathbf{x} = \mathbf{0}$, $\mathbf{z} = \mathbf{0} \Rightarrow C_v H_w O_y$

$$N_{F} \cdot C_{v} H_{w} O_{y} + N_{O_{2}, sto} \cdot (O_{2} + 3.762 \cdot N_{2}) \rightarrow N_{CO_{2}} \cdot CO_{2} + N_{H_{2}O} \cdot H_{2}O + N_{N_{2}, sto} \cdot N_{2}$$

$$R_{A/F} = \left(v + \frac{w}{4} - \frac{y}{2}\right) \cdot \frac{4.762 \cdot 28.85}{12 \cdot v + w + 16 \cdot y}$$

$$C_{v}H_{w}: \qquad With \quad Y = \frac{w}{v} \rightarrow R_{A/F} = \left(1 + \frac{Y}{4}\right) \cdot \frac{4.762 \cdot 28.85}{12 + Y}$$

$$C_{v}H_{w}O_{y}: \qquad With \quad Y = \frac{w}{v}, Z = \frac{y}{v} \rightarrow R_{A/F} = \left(1 + \frac{Y}{4} - \frac{Z}{v}\right) \cdot \frac{4}{v}$$

•
$$C_v H_w O_y$$
: With $Y = \frac{w}{v}, Z = \frac{y}{v} \rightarrow R_{A/F} = \left(1 + \frac{Y}{4} - \frac{Z}{2}\right) \cdot \frac{4.762 \cdot 28.85}{12 + Y + 16 \cdot Z}$

Stoichiometric ratio as a function of Y (=H/C) and Z (=O/C):

